
Topology-driven Progressive Mesh Construction for Hardware-Accelerated

Rendering

Pavlo Turchyn∗

University of Jyväskylä

Sergey Korotov†

University of Jyväskylä

Abstract

We present an algorithm for construction of progressive
meshes, which are used for rendering from static memory
buffers. Compared to previous work our scheme reduces
memory storage requirements while maintaining a good ver-
tex cache coherency.

Keywords: continuous level-of-detail, view-independent
progressive mesh, vertex cache, sliding window

1 Introduction

Progressive meshes (or continuos level-of-detail) scheme en-
codes a sequence of meshes with different geometrical com-
plexity [Hoppe 1996]. Originally, algorithm suggests updat-
ing memory buffers, which contain mesh’s geometry (vertex
buffer) and connectivity information (index buffer). Updates
of vertex buffer may be avoided by using corresponding sim-
plification operator (e.g. half-edge collapse [Luebke et al.
2002]) at the expense of some geometrical error increase.
Sliding-window algorithm [Forsyth 2001] may be used to
avoid updates of index buffer at the expense of a large re-
sulting index buffer size. The latter algorithm is optimal in
sense of memory management in major 3D APIs (e.g. Mi-
crosoft Direct3D) since changing memory buffers, which are
located in GPU-accessible memory, imposes CPU overhead
and needs additional memory to avoid breaking CPU-GPU
parallelism. Moreover, instancing does not require any ad-
ditional memory.
Since the introduction of FIFO cache for post-processed

vertices [Hoppe 1999], it has been widely implemented in the
commodity hardware. As the complexity of per-vertex com-
putations grows, the vertex processing performance improve-
ments focused on cache miss rate. Although vertex cache is
transparent to the application, a care must be taken to avoid
its trashing. [Bogomjakov and Gotsman 2001] presents a
smart update algorithm for progressive meshes that preserves
original optimized rendering order. The idea of preserving
original order is also exposed in skip-strips scheme [Luebke
et al. 2002; Forsyth 2001], which relies on the hardware’s
ability to efficiently detect degenerate triangles. However,
such schemes still require updating index buffer.
Our algorithm uses sliding-window scheme for rendering

of progressive mesh, while trying to minimize required mem-
ory size. Also, we show that when optimization for vertex

∗e-mail: pturchy@cc.jyu.fi
†e-mail: korotov@mit.jyu.fi

cache is incorporated as one of the objectives into the sim-
plification process, the resulting ACMR is nearly identical
to discrete LOD optimized with standalone vertex-cache op-
timizers like NvTriStrip [NVI 2001].

2 Previous work

Mesh M is defined as a set of vertices and a set of indices
that define their connectivity. We seek to construct such a
sequence r1, ..rn of parameters for simplification operator S,
where each ri minimizes simplification metric E

ri = min
r∈R

E(Sri−1S
ri−2 ...S

r0M)

Throughout this paper we use the vertex removal opera-
tor, but the same reasoning may apply to other operators.
We call a set of triangles, which are incident to the removed
vertex, a patch p. The latter vertex is called center of patch.
Assume that we have a mesh on which a list P of non-

overlapping patches is defined. The index buffer is initialized
with P . Progressive mesh construction algorithm iteratively
takes patch from the top of the list, apply simplification
operator and then append resulting triangulation to the the
end of index buffer.

Patch1

Patch2

Patch3

Patch4

...

Simplified
Patch1

Vertex
removal

Simplify

Patchn

LOD0

LOD1

...

Figure 1: Index buffer in sliding window algorithm

When all patches in the list are processed, one has to
perform a next pass (restart algorithm) and build a new P
from the simplified mesh. Then new P is processed in the
same manner. In such scheme we can render a mesh with
the required LOD simply by choosing appropriate window in
the index buffer. The index buffer is remaining static, which
gives many desired properties to the algorithm: index buffer
can be shared among all mesh instances; no CPU overhead

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/



occurs due to locking or copying data; no additional memory
is required for rename buffers, which hold data still being
processed by GPU.
The major problem of the algorithm is a size of the index

buffer, since approximately 4/6 of indices have to be du-
plicated within a single algorithm iteration, and also when
next pass occurs we have to rearrange processed P into a
new collection of patches, which effectively duplicates P .

3 Topology-driven progressive mesh con-

struction

Typically, mesh simplification process is guided by the sim-
plification metric E, which accounts geometrical and at-
tributes error. However, to construct optimal progressive
mesh for sliding-window algorithm we follow such objectives,
which take into account mesh connectivity:

• Minimize size of static index buffer. This factor mainly
depends on the number of passes we perform, which in
turn depends on how many collapses we perform each
pass. In order to maximize the number of collapses we
have to maximize the size of P .

• Maximize vertex cache coherency during rendering.
This may be done by rearranging patches such that
cached vertices are reused among patches.

3.1 Patch coverage problem

First, we describe a greedy algorithm to find P of maximal
size. Assume that we have a mesh with initially uncolored
vertices. When we choose a patch, we paint all patches’
vertices into some color. Note that any colored vertex cannot
be center of patch since patches cannot overlap. Thus, the
strategy of a greedy algorithm is to choose a patch, which
introduces the least amount of new colored vertices, since
this will leave the biggest number of unpainted vertices that
can be patch centers. This strategy can be formulated as
the following heuristic

Epatch(pi) =

∑

vj∈V
F (vj)

|V |
, (1a)

V = {vj}, vj ∈ pi, (1b)

F (vj) =

{

0, if vj is colored
1, otherwise.

(1c)

The problem of building P is a maximal clique problem
on a graph, which complements vertices connectivity graph.
This problem is NP-complete. We have compared perfor-
mances of the greedy algorithm and QUALEX-MS package,
which is based on Motzkin-Straus quadratic programming
formulation with the complexity O(n3) [Busygin 2002].

Patches foundData Triangles
QUALEX Greedy

Venus10 6718 1015 984
Venus 67170 9891 9739
Bunny 69451 10316 10301

Table 1: Performance of QUALEX-MS and
greedy algorithm

Two algorithms demonstrate nearly identical perfor-
mance. On the other hand, greedy search took several sec-
onds, while QUALEX required up to several minutes to per-
form its first iteration.

3.2 Optimization for vertex cache

We define the heuristic for a greedy construction of rendering
sequence. Each iteration algorithm looks for a patch that
minimizes functional

Evcache(pi) =

∑

vj∈V
K(vj)

|V |
, (2a)

V = {vj}, vj ∈ pi, (2b)

K(vj) =

{

0, if vj is in cache
1, otherwise.

(2c)

Such heuristic chooses a patch that introduces the least
amount of cache trashing. The convenience of greedy so-
lution is that (2) can be easily incorporated into the func-
tional E. The alternative approach is to construct universal
rendering sequence using recursive cut or minimum linear
arrangement algorithms [Bogomjakov and Gotsman 2001].
In practice, average cache miss rate per triangle (ACMR)
demonstrated by all these methods is nearly identical.

3.3 Progressive mesh construction

Using weighting method both (1) and (2) may be easily
incorporated into the simplification metric E (in theory,
along with geometrical error, but it is not used for purely
topologically-based algorithm). However, since patch cover-
age problem is more important for practical use, it is advan-
tageous to optimize for this criterion first, and then for the
vertex cache.

While |M|>0
  P=FindPatches(M)
  IndexBuffer.Append(P)
  While |P|>0
    p=GetPatch(P)
    P.Remove(p)
    If IsSimplificationValid(p) then
       Simplify(p)
    IndexBuffer.Append(p)

FindPatches builds a list of patches using greedy search
as described in Section 3.1. GetPatch returns a patch, which
minimizes (2). IsSimplificationValid determines if simplifi-
cation of the patch results into some undesired effects, e.g.
face-flipping in half-edge collapse operator. Choosing good
criteria for IsSimplificationValid is important in order to
avoid destruction of important geometrical features.

4 Numerical results

In our numerical experiments we have compared our method
with two alternative approaches of LOD construction, which
also offer advantages of static memory buffers. First ap-
proach is discrete LOD (DLOD) where each level is created
using quadratic error metric (QEM)-based simplification al-
gorithm with sharp features preservation [Garland and Heck-
bert 1998], and then optimized using NvTriStrip library.
The other approach is directly taken from [Forsyth 2001]. It
is QEM-guided construction of view-independent progressive

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/



mesh (VIPM) for sliding-window algorithm. We used ver-
tex contraction operator for DLOD construction. For both
VIPM and topology-driven progressive mesh (TD-VIPM) al-
gorithms we used half-edge collapse operator.
Figures 2–3 show geometrical error (Hausforff distance be-

tween the original mesh and simplified mesh) of different
LOD. Measurements were done using Metro tool [Cignoni
et al. 1998]. Expectedly, the best results are demon-
strated by DLOD algorithm since it is using unconstrained
geometry-guided simplification. VIPM is only marginally
better than TD-VIPM. The explanation of this fact is that
we kept the size of index buffer as small as possible by trying
not to start new pass until it is absolutely required. However,
the size of resulting index buffer in case of VIPM algorithm
is still larger than the one in case of TD-VIPM (see Table
2).

Index buffer, %Data Triangles
TD-VIPM VIPM

Bunny 69451 550 656
Hugo 16374 510 560
Venus 67170 556 655
Table 2: Static index buffer size in % of index

buffer of the original model

0

0.01

0.02

0.03

0.04

0 20000 40000 60000 80000

LOD

Error VIPM

TD-VIPM

Discrete LOD

Figure 2: Normalized Hausdorff distance for Bunny

In terms of vertex cache coherency, VIPM method demon-
strates moderate results with ACMR that is close to one
(see Figure 4). Both TD-VIPM and DLOD algorithms show
nearly identical performance in the region of 10-20 cache
entries (see Figures 4–5).
Summarizing, topology-driven method demonstrates sig-

nificantly better performance than geometry-driven one
when sizes of index buffer are of the same order. On the
other hand, DLOD offers (arguably) better visual appear-
ance while TD-VIPM offers better flexibility. We claim that
TD-VIPM can replace DLOD in applications where render-
ing speed is the priority factor.

5 Conclusions

Simplification based solely on the topology is naturally suit-
able for animated meshes, where exact geometry is unknown

0

0.003

0.006

0.009

0.012

0 20000 40000 60000 80000

LOD

Error
VIPM

TD-VIPM

Discrete LOD

Figure 3: Normalized Hausdorff distance for Venus

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20000 40000 60000 80000

LOD

ACMR

VIPM

TD-VIPM

Discrete LOD

Figure 4: ACMR for Bunny, vertex cache size 16

a priory. Although geometrical error is mostly ignored in
our scheme, the numerical experiments show that simplifica-
tion results are still acceptable, particularly for semi-regular
grids. Because of a good vertex cache coherency and static
nature of involved memory buffers, our scheme is aimed
at real-time applications, such as video games, architec-
tural walkthrough systems etc, where precise load-balancing,
which is offered by progressive meshes, is important in order
to maintain interactive frame rates.

Acknowledgements

The Bunny and Happy Buddha models are courtesy of the
Stanford Scanned Data Repository.

References

Bogomjakov, A., and Gotsman, C. 2001. Universal ren-
dering sequences for transparent vertex caching of pro-
gressive meshes. In Proceedings of Graphics Interface
2001, B. Watson and J. W. Buchanan, Eds., 81–90.

Busygin, S., 2002. A new trust region technique for the
maximum weight clique problem.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/



69451 468 468 468

67170 974 974 974

Figure 6: From left to right: original mesh, DLOD, VIPM, TD-VIPM

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40

Cache

ACMR VIPM

TD-VIPM

Discrete LOD

Figure 5: ACMR for Bunny, 50% LOD

Cignoni, P., Rocchini, C., and Scopigno, R. 1998.
Metro: Measuring error on simplified surfaces. Compu-
ter Graphics Forum 17, 2, 167–174.

Forsyth, T. 2001. Comparison of vipm methods. In Game
Programming Gems 2, Charles River Media, M. DeLoura,
Ed., 363–376.

Garland, M., and Heckbert, P. S. 1998. Simplifying
surfaces with color and texture using quadric error met-
rics. In IEEE Visualization ’98, D. Ebert, H. Hagen, and
H. Rushmeier, Eds., 263–270.

Garland, M., 1998. Quadric-based polygonal surface sim-
plification.

Hoppe, H. 1996. Progressive meshes. Computer Graphics
30, Annual Conference Series, 99–108.

Hoppe, H. 1999. Optimization of mesh locality for transpar-
ent vertex caching. In Siggraph 1999, Computer Graph-
ics Proceedings, Addison Wesley Longman, Los Angeles,
A. Rockwood, Ed., 269–276.

Luebke, D., Reddy, M., Cohen, J., Varshney, A., Wat-
son, B., and Huebner, R. 2002. Level of Detail for 3D
Graphics. Computer Graphics and Geometric Modeling.
Morgan Kaufmann.

NVIDIA Corporation. 2001. NvTriStrip: a library for
vertex cache aware stripification of geometry.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/


